Abstract: We consider a class of semi-parametric estimators of a negative or null extreme value index, parameterized in a tuning or control parameter. Such tuning parameter enables us to have access to an estimator with a null dominant component of asymptotic bias, and we are able to achieve a high efficiency relatively to other classical estimators. In this work, we compare three adaptive choices of the tuning parameter through a Monte Carlo simulation study.

Key Words: Extreme value index, semi-parametric estimation, bias reduction.
AMS: 62G20, 62G32.

1 Introduction

Let us consider the common set-up of independent, identically distributed (i.i.d.) random variables (r.v.’s) \(X_1, X_2, \ldots, X_n\), with a common distribution function (d.f.) \(F\) and denote the associated ascending order statistics (o.s.) by \(X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n:n}\). Let us assume that there exist sequences of real constants \(\{a_n > 0\}\) and \(\{b_n \in \mathbb{R}\}\) such that the normalized maximum, i.e. \((X_{n:n} - b_n)/a_n\), converges in distribution towards a non-degenerate r.v.. Then \(F\) belongs to the max-domain of attraction of the extreme value (EV) d.f., \(EV_\gamma(x) := \exp\{-(1 + \gamma x)^{-1/\gamma}\}, 1 + \gamma x > 0, \gamma \in \mathbb{R}\), and we write \(F \in \mathcal{D}_M(EV_\gamma)\). A necessary and sufficient condition for \(F \in \mathcal{D}_M(G)\) is (de Haan, 1984):

\[
\lim_{t \to \infty} \frac{U(tx) - U(t)}{a(t)} = \frac{x^\gamma - 1}{\gamma}, \quad \forall x > 0,
\]

for some measurable positive function \(a(t)\) and with \(U(t)\) standing for the quantil function defined by \(U(t) := F^*(1 - 1/t), t \geq 1\) with \(F^*(x) := \inf\{y : F(y) \geq x\}\).

The parameter \(\gamma\) is the extreme value index (EVI), a measure of the heaviness of the right tail function \(F := 1 - F\), and the heavier the tail, the larger \(\gamma\) is. The EVI needs to be estimated in a precise way, because such an estimation is one of the basis for the estimation of other parameters of extreme and large events, like a high quantile of probability \(1 - p\), with \(p\) small, the right endpoint of the model \(F\) underlying the data, \(x^F := \sup\{x : F(x) < 1\}\), whenever finite, and the return period of a high level, among others.

We will work with the \(k + 1\) top o.s.’s associated to the \(n\) available observations, assuming only that the model \(F\) underlying the data is in \(\mathcal{D}_M(G_\gamma)\), for a certain \(\gamma \leq 0\). Most of the classical semi-parametric EVI-estimators have a strong bias for moderate up to large values of \(k\), including the optimal \(k\), in the sense of minimal mean squared
error (MSE). To improve the performance of classical EVI-estimators we have to deal with bias reduction techniques (see Beirlant et al., 2012 and references within for more details). For the negative or null EVI-estimation, we refer the recent estimator in Caeiro and Gomes (2010),

\[z_{NM}^{k,n}(\theta) := \frac{1}{2} \left\{ 1 - \left(\frac{M_{[k/2],n}^{(2)}}{M_{k,n}^{(1)}} \right)^{2} - 1 \right\} + \theta M_{k,n}^{(1)}, \quad \theta \in \mathbb{R}. \tag{2} \]

with

\[M_{k,n}^{(j)} := \frac{1}{k} \sum_{i=1}^{k} \{ \ln X_{n-i+1:n} - \ln X_{n-k:n} \}^{j}, \quad j \geq 1. \]

Apart from the usual integer parameter \(k \), related with the number of top order statistics involved in the estimation, the estimator depend on an extra tuning parameter \(\theta \), which makes it flexible and possibly second-order unbiased for a large variety of models in \(D_{M}(EV_{\gamma}, \gamma < 0) \). To derive the asymptotic behaviour of the EVI-estimator, we shall assume the following second order condition:

\[\lim_{t \to \infty} \frac{U(tx) - U(t) - \frac{\gamma - 1}{\gamma} t^{\gamma - 1}}{A(t)\gamma} = \frac{1}{\rho} \left(\frac{x^{\gamma+\rho} - 1 - x^{\gamma-1}}{\gamma} \right), \]

for all \(x > 0 \), where \(\rho \leq 0 \) is a second order parameter controlling the speed of convergence of the first order condition in (1) and \(|A(t)| \in RV_{\rho} \), and \(RV_{\rho} \) stands for the class of regularly varying functions with index of regular variation \(\rho \), i.e. positive measurable functions \(g \) such that \(\lim_{t \to \infty} g(tx)/g(t) = x^{\rho} \), for all \(x > 0 \).

Under the second order condition with \(\gamma \leq 0 \), adequate conditions on \(k \) and \(\theta \) (see Caeiro and Gomes, 2010, for more details), and with \(\mathcal{N}(\mu, \sigma^{2}) \) denoting a normal r.v. with mean value \(\mu \) and variance \(\sigma^{2} \), we get a null bias, even for moderate values of \(k \), i.e.,

\[\sqrt{k}(\hat{\gamma}_{k,n}^{NM(\theta)} - \gamma) \xrightarrow{d}{n \to \infty} \mathcal{N} \left(0, \sigma_{NM}^{2} = \frac{(1-\gamma)^{2}(1-2\gamma)(1-\gamma+6\gamma^{2})}{(1-3\gamma)(1-4\gamma)} \right) \tag{3} \]

If \(\theta \) is not appropriated chosen, then the mean value in eq. (3) will be non-null.

In this work, we are interested on the adaptive choice of the tuning parameter \(\theta \) in the semi-parametric estimation of the EVI. We shall study and compare the performance of several adaptive choices of \(\theta \) through a Monte Carlo simulation study.

2 Adaptive selection of the tuning parameter

For the adaptive selection of \(\theta \), we shall consider the same auxiliary statistic used in Gomes et al. (2013),

\[T_{k,n}(\theta) := \gamma_{[k/2],n}^{NM(\theta)} - \gamma_{k,n}^{NM(\theta)} = (\hat{\gamma}_{[k/2],n}^{NM(\theta)} - \hat{\gamma}_{k,n}^{NM(\theta)}) + \theta (M_{[k/2],n}^{(1)} - M_{k,n}^{(1)}) \]

\[=: r_{k} + \theta s_{k}, \quad k = 2, \ldots, n - 1, \tag{4} \]

where \([x] \) is the integer part of \(x \). The stability of \(T_{k,n}(\theta) \) around zero for moderate values of \(k \), say \(k \in [k_{1}, k_{2}] \), with \(2 \leq k_{1} < k_{2} \leq n - 1 \), let Gomes et al. (2013) to chose \(\theta \) as the value that minimizes the sum of squared bias of \(T \), i.e.,

\[\hat{\theta} \equiv \hat{\theta}(k_{1}, k_{2}) := \arg \min_{\theta} \sum_{k=k_{1}}^{k_{2}} (r_{k} + \theta s_{k})^{2} = - \sum_{k=k_{1}}^{k_{2}} r_{k}s_{k}/ \sum_{k=k_{1}}^{k_{2}} s_{k}^{2}, \tag{5} \]
where r_k and s_k have been defined in (4). Since r_k and s_k, and consequently $\hat{\theta}$, can be affected by an asymptotic bias, other adaptive choices of θ can be considered. Here we shall introduce two new adaptative choices of θ. The first is the adaptive choice $\tilde{\theta}$ given by the least absolute value

$$
\tilde{\theta} \equiv \tilde{\theta}(k_1, k_2) := \arg \min_{\theta} \sum_{k=k_1}^{k_2} |r_k + \theta s_k|.
$$

(6)

Notice that if $k_2 > k_1$, the solution of eq. (6) can only be achieved thought a numerical method. The other adaptative choice of θ, introduced in this work, is a statistic consistent in probability to the value θ_0 such that the auxiliary statistic $T_{k,n}(\theta_0)$, in eq. (4), is asymptotic unbiased. This value is given by

$$
\tilde{\theta} \equiv \tilde{\theta}(k_1, k_2) := - \sum_{k=k_1}^{k_2} r_k / \sum_{k=k_1}^{k_2} s_k.
$$

(7)

Remark: Since $|r_k|$ can take very high values if k is very small, we advise the choice

$$
k_1 = [n^{0.5}] + 1 \quad \text{and} \quad k_2 = [n^{0.95}].
$$

(8)

3 Comparative simulation study of the adaptive choices of the tuning parameter

We are now interested in the comparative behaviour of the adaptive choices of θ given in (5), (6) and (7), in the estimation of the EVI through the estimator in (2), for finite sample sizes. The study is based on a multi-sample Monte Carlo simulation with 5000 runs, with k_1 and k_2 given in (8), for samples of size $n = 1000$ and $n = 5000$, and for the following underlying parents:

- Arcsin model with d.f.

$$
F(x) = \frac{2}{\pi} \arcsin(\sqrt{x}), \quad 0 < x < 1 \quad (\gamma = -2);
$$

- Generalized Pareto (GP) distribution with d.f.

$$
GP_\gamma(x) = 1 + \ln \text{EV}_\gamma(x), \quad 1 + \gamma x > 0, \quad x > 0
$$

and $\gamma = -0.25$.

We also considered the choices $\theta = 0.45$ and $\theta = 0.9$, for the Arcsin and GP models, respectively. Those values where obtained from previous simulation studies (Caeiro and Gomes, 2010; Gomes et al., 2013). We present, in Figures 1 and 2, the simulated mean value (E) and root mean squared error (RMSE), as function of k, for an underlying Arcsin parents. Figures 3 and 4 have the same simulated quantities, as function of k, for $\text{GP}_{-0.25}$ parents.

The results here presented allow us to present some conclusions:

- As expected, the precision of the Algorithm improves as the sample size increases.

- For the same sample size, the simulated mean values have larger bias for the GP parents than for Arcsin parents.
Figure 1: Patterns of simulated mean values of $\hat{\gamma}_{k,n}^{NM(\theta)}$, as functions of k, for an underlying Arcsin parent and $n = 1000$ (left), $n = 5000$ (right).

Figure 2: Patterns of simulated RMSE of $\hat{\gamma}_{k,n}^{NM(\theta)}$, as functions of k, for an underlying Arcsin parent and $n = 1000$ (left), $n = 5000$ (right).

Figure 3: Patterns of simulated mean values (E) of $\hat{\gamma}_{k,n}^{NM(\theta)}$, as functions of k, for an underlying $GP_{-0.25}$ parent and $n = 1000$ (left), $n = 5000$ (right).
If we compare the RMSE, which is an important measure of the precision of the EVI-estimator, we have usually

$$RMSE(\hat{\gamma}^{NM}_{k,n}) < RMSE(\hat{\gamma}^{NM}_{k,n}) < RMSE(\hat{\gamma}^{NM}_{k,n}),$$

for k not very small, neither very high.

Acknowledgements. Research partially supported by National Funds through FCT–Fundação para a Ciência e a Tecnologia, projects PEst-OE/MAT/UI0006/2011 (CEAUL), PEst-OE/MAT/UI0297/2011 (CMA/UNL) and EXTREMA, PTDC/MAT/101736/2008.

References

